for their help with the computations and Dr James Ibers for helpful correspondence and suggestions.

References

Bacon, G. E. (1952). Acta Cryst. 5, 492.
Batterman, B. W. (1959a). Phys. Rev. Letters, 2, 47.
Batterman, B. W. (1959b). Phys. Rev. 115, 81.
Berghuis, J., Hanappel, IJ. M., Potters, M., Loopstra, B. O., MacGillavry, C. H. \& Veenendaal, A.L. (1955). Acta Cryst. 8, 478.

Bewilogua, L. (1931). Phys. Z. 32, 740.
Bragg, W. L. \& West, J. (1928). Z. Kristallogr. A, 69, 118.

Cochran, W. (1953). Acta Cryst. 6, 812.
Debye, P. (1930). Phys. Z. 31, 419.
Forsyth, J. B. \& Wells, M. (1959). Acta Cryst. 12, 412.
Freeman, A. J. (1959a). Acta Cryst. 12, 261.
Freeman, A. J. (1959b). Phys. Rev. 113, 169.
Freeman, A. J. \& Wood, J. H. (1959). Acta Cryst. 12, 271.

Hartree, D. R. (1954). Proc. Camb. Phil. Soc. 51, 206.
Hartree, D. R. (1956). J. Opt. Soc. Amer. 46, 350.
Hoerni, J. A. \& Ibers, J. A. (1954). Acta Cryst. 7, 744.
Hoerni, J. A. \& Ibers, J. A. (1957). Acta Cryst. 10, 86.
James, R. W. \& Brindley, G. W. (1931). Phil. Mag. (7), 12, 81.
Komura, V., Tomile, Y. \& Nathans, R. (1959). Phys. Rev. Letters, 3, 268.
Mayers, D. F. (1959). Proc. Roy. Acad. A. (To be published.)

McWeeny, R. (1951). Acta Cryst. 4, 513.
Nathans, R. \& Paoletti, A. (1959). Phys. Rev. Letters, 2, 254.
Nathans, R., Shull, C. G., Shirane, G. \& Andreson, A. (1959). J. Phys. Chem. Solids, 10, 133.

Parry, G. S. (1955). Acta Cryst. 8, 593.
Pickart, S. J. \& Nathans, R. (1959). J. Appl. Phys. (To be published.)
Piper, W. (1959). Private communication.
Roothan, C. C. J. (1951). Revs. Mod. Phys. 23, 69.
Slater, J. C. (1951). Phys. Rev. 81, 385.
Thomas, L. H. \& Umeda, K. (1957). J. Chem. Phys. 26, 293.

Veenendaal, A. L., MacGillavry, C. H., Stam, B., Potters, M. L. \& Römgens, M. J. H. (1959). Acta Cryst. 12, 242.
Viervoll, H. \& Øarim, O. (1949). Acta Cryst. 2, 277.
Watson, R. E. (1959). Technical Report No. 12, S.S.M. T.G., MIT. (Unpublished.)

Watson, R. E. (1960). Phys. Rev. 118, 1036.
Weiss, R. J. \& Demarco, J. J. (1958). Revs. Mod. Phys. 30, 59.
Weiss, R. J. \& Demarco, J. J. (1959). Phys. Rev. Letters, 2, 148.
Weiss, R. J. \& Freeman, A. J. (1959). J. Phys. Chem. Solids, 10, 147.
Wood, J. H. \& Pratt, G. W., Jr. (1957). Phys. Rev. 107, 995.

Worsley, B. H. (1958). Proc. Roy. Soc. A, 247, 390.
Worsley, B. H. (1959). Canad. J. Phys. 37, 967.

The Thermal Vibrations in Diketopiperazine

By Kathleen Lonsdale
University College, London, England

(Received 10 February 1960)

Abstract

An analysis of the anisotropic atomic thermal parameters obtained by Degeilh \& Marsh for diketopiperazine has shown that the principal rigid-body translations of the molecules are along the directions towards neighbouring parallel chains of molecules and are of the order of amplitude $0 \cdot 13-0 \cdot 14 \AA$. The translational amplitude within the chain is a little less. The rigid-body libration about the normal to the molecule is very small (semi-amplitude 1.8°), and results in tangential movements of $\mathrm{C}_{1}, \mathrm{C}_{2}$ and N of the order of $0.04 \AA$, and of O of $0.08 \AA$. There are very large out-ofplane librational movements about in-plane axes (semi-arnplitudes 7.0° and 4.7°) the larger being about an axis making an angle of about 45° with [101] and about 10° with the $\mathrm{C}=\mathrm{O}$ bond. The O and C_{1} atoms appear to have vibrational movements approximately along [101] which are independent of the rigid-body vibrations. The coefficient of expansion should be minimum along [101] and maximum normal to ($10 \overline{1}$).

In a recent paper by Degeilh \& Marsh (1959), to which we shall refer as DM, the crystal structure of diketopiperazine has been refined. This study shows that Corey's original (1938) X-ray determination was remarkably accurate. Vainshtein (1955) later gave hydrogen positions, based on an electron-diffraction study. The latest refinement (DM) gives individual
anisotropic temperature factors, but does not attempt more than a qualitative interpretation of these data in terms of rigid-body translations and librations.

Since their R-factor (for 1144 observed reflexions with non-zero weight) is 0.072 , it does seem possible to analyze the DM thermal-vibration data with some confidence (Lonsdale \& Milledge, 1959).

Fig. 1. (a) Directions of major axes of thermal vibration for individual atoms as seen in projection (010). (b) Directions of major axes of thermal vibration for individual atoms as seen in projection on the molecular plane. The directions shown for L, M, N are those finally selected as preferred libration axes.

In Table 2 of DM the temperature parameters are given in the form

$$
T_{i}=\exp \left(-\alpha_{i} h^{2}-\beta_{i} k^{2}-\gamma_{i} l^{2}-\delta_{i} h k-\varepsilon_{i} h l-\eta_{i} k l\right)
$$

In their Table 7 the $\alpha_{i} \ldots \eta_{i}$ are transformed by the method of Rollett \& Davies (1955) into magnitudes and direction cosines of principal axes of the B-ellipsoids.* It is stated that for all atoms except C_{1} the

* Dr Marsh writes to say:
'It has been pointed out by Dr Allen Larson that the transformed direction cosines in Table 7 of DM are in error. The correct values of the principal temperature factors and their direction cosines relative to the real crystallographic axes are as follows:

Atom	Axis i	B_{i}	$g_{i 1}$	$g_{i 2}$	$g_{i 3}$
C_{1}	1	2.356	-0.552	0.096	0.897
	2	1.604	0.188	0.982	-0.015
	3	1.252	0.812	-0.162	0.442
C_{2}	1	3.248	-0.724	-0.133	0.771
	2	1.520	0.341	0.784	0.467
	3	1.224	0.600	-0.606	0.434
N	1	3.444	-0.563	-0.062	0.894
	2	1.668	0.235	0.944	0.197
	3	1.080	0.792	-0.324	0.402
O	1	4.856	-0.617	-0.018	0.865
	2	1.920	-0.241	0.956	-0.132
	3	1.304	0.749	0.293	0.484

B_{1} axis is within 8° of the normal N to the molecular plane, while for C_{1} it is within 16° (cf. our Table 2); and the authors add 'Probably none of these deviations is greater than the experimental error', the implication being that B_{1} may really lie along N for all the heavy atoms. But if this were so, one would expect to find the directions of B_{1} scattered randomly about N in space, whereas in fact they all lie much more closely in (010) and normal to (101). This may be seen from Table 1, where the angle of B_{1} with [010] is always greater than the angle of N with [010], whereas B_{1} lies at $-5 \cdot 5^{\circ},+7 \cdot 7^{\circ},+3 \cdot 6^{\circ},+1 \cdot 0^{\circ}$ to (010); and the scatter of B_{1} about the normal to ($10 \overline{1}$) is random.

The molecular plane is about 9° away from ($10 \overline{\mathrm{I}}$) but B_{2} and B_{3} are rather nearer to ($10 \overline{1}$) than to the molecular plane, although if we except B_{2} for C_{1} there is not a great deal to choose between them (Fig. $1(a)$).

Fig. $1(b)$ shows that in the molecular plane there is considerable dispersion of the directions of B_{2} and B_{3}, although on the whole they can be described as being along the normal to [101] and along [101], respectively.

Using the molecular dimensions given in DM, it is possible to write down equations (Lonsdale \& Milledge, 1959 ; Lonsdale, Milledge \& Rao, 1960) which express the mean-square amplitudes in terms of independent

Table 1. Values of $B_{i}, \overline{u_{i}^{2}}$ and $\overline{\left(u_{i}^{2}\right)^{\frac{1}{2}}}$, with corresponding angles, direction cosines and (direction cosines) ${ }^{2}$, relative to [101], [010] and the normal (\perp) to (101), deduced from Table 2 of DM

				Angles relative to			Direction cosines			(Direction cosines) ${ }^{2}$		
Atom	$B_{i}\left(\AA^{\mathbf{2}}\right)$	$\overline{u_{i}^{2}}\left(\AA^{2}\right)$	$\left(\overline{u_{i}^{2}}\right)^{\frac{1}{2}}(\AA)$	[101]	[010]	$1(10 \overline{\mathrm{I}})$	[101]	[010]	$\perp(10 \overline{1})$	[101]	[010]	$\perp(10 \overline{\mathrm{I}})$
C_{1} (1)	$2 \cdot 356$	0.0298	$0 \cdot 173$	96.4	95.5	$8 \cdot 6$	-0.111	-0.096	0.989	0.012	$0 \cdot 009$	0.978
(2)	$1 \cdot 604$	0.0203	$0 \cdot 143$	$81 \cdot 6$	$10 \cdot 8$	83.5	$0 \cdot 151$	0.982	$0 \cdot 113$	0.023	0.964	0.013
(3)	$1 \cdot 252$	0.0158	$0 \cdot 126$	10.9	$99 \cdot 3$	$84 \cdot 6$	0.982	-0.161	0.094	0.964	0.026	0.009
C_{2} (1)	$3 \cdot 248$	0.0411	$0 \cdot 203$	$83 \cdot 3$	$82 \cdot 3$	$10 \cdot 2$	$0 \cdot 117$	0.133	0.984	$0 \cdot 014$	0.018	0.968
(2)	$1 \cdot 520$	0.0192	$0 \cdot 139$	$53 \cdot 5$	$38 \cdot 3$	$100 \cdot 2$	$0 \cdot 594$	0.784	-0.177	0.353	0.615	0.031
(3)	$1 \cdot 224$	0.0155	$0 \cdot 124$	37-3	$127 \cdot 3$	$90 \cdot 7$	0.795	-0.606	-0.013	$0 \cdot 632$	$0 \cdot 367$	$0 \cdot 000$
N (1)	$3 \cdot 444$	$0 \cdot 0436$	$0 \cdot 209$	$95 \cdot 7$	$86 \cdot 4$	$6 \cdot 8$	-0.100	0.062	0.993	0.010	0.004	0.986
(2)	1-668	0.0211	$0 \cdot 145$	$70 \cdot 7$	$19 \cdot 3$	91.5	$0 \cdot 330$	0.943	-0.026	$0 \cdot 109$	$0 \cdot 889$	$0 \cdot 001$
(3)	1.080	0.0137	$0 \cdot 117$	$20 \cdot 2$	$109 \cdot 0$	$83 \cdot 4$	0.938	-0.326	$0 \cdot 115$	$0 \cdot 880$	$0 \cdot 106$	0.013
O (1)	$4 \cdot 856$	0.0616	$0 \cdot 248$	$92 \cdot 0$	89.0	$2 \cdot 3$	-0.035	0.018	0.999	0.001	0.000	0.998
(2)	1.920	0.0243	$0 \cdot 156$	106.9	$17 \cdot 0$	$91 \cdot 6$	-0.291	0.956	-0.028	0.085	0.914	0.001
(3)	1-304	0.0165	$0 \cdot 128$	$17 \cdot 1$	$73 \cdot 0$	88.4	0.956	$0 \cdot 292$	$0 \cdot 029$	0.914	$0 \cdot 085$	$0 \cdot 001$
Direction relat	of molec to these	lar norn xes	al N,	$90 \cdot 3$	80.7	$9 \cdot 2$	-0.006	$0 \cdot 161$	0.987	$0 \cdot 000$	$0 \cdot 026$	0.974

Note l. E.s.d. for thermal parameters are not given by DM but in a private communication Dr Marsh says that they average to about 0.05 in units of $B\left(0.0006\right.$ in units of $\left.\overline{u^{2}}\right)$.

Note 2. The directions [101], [010] and $\perp(10 \overline{\mathrm{I}})$ are referred to in later discussion as E, F, G.
rigid-body and non-rigid-body vibrations, as follows:

$$
\begin{equation*}
\overline{u_{i}^{2}}=\sum_{k} t_{k}^{2} \alpha_{i k}^{2}+\sum_{j} R_{i j}^{2} \varphi_{j}^{2} \alpha_{i j}^{2}+\overline{u_{i d}^{2}}, \tag{I}
\end{equation*}
$$

where the t_{k} are the rigid-body translational amplitudes (\AA) along specified directions k, and $\alpha_{i k}$ are the direction cosines for the individual atomic vibration amplitudes relative to those directions; $\varphi ;$ are the rigid-body librational amplitudes (in radians) and $R_{i j} \varphi_{j}$ are the actual librational atomic amplitudes (\AA) assumed tangential to the radius vectors to axes j, which may but need not be identical with k. The non-rigid-body (distortional) atomic vibration $u_{i d}$ is assumed to be along the direction of the resultant vibration u_{i} and will be taken as near to zero unless there is a clear indication to the contrary.

The translational vibrations, which include long thermal waves of large amplitude in which neigh-
bouring molecules move together, may be expected to predominate, and thus largely to control the directions of the resultant individual atomic principal vibration directions (thermal axes). Figures $1(a)$ and (b) both imply that the average directions k are [101], [010] and the perpendicular to ($10 \overline{1}$) which we have named E, F, G directions. Table 1 lists the corresponding values of $\alpha_{i k}$.

The libration axes may be expected to be the normal N to the molecular plane, and two orthogonal axes in that plane. For the latter, the corresponding atomic movements (assumed small) will be parallel to N, and hence $\alpha_{i j}$ is the direction cosine of the thermal axis relative to $N\left(\alpha_{i N}\right)$. For the libration about N, the corresponding atomic movements will be in the molecular plane, normal to the radius vector of the appropriate atom. The direction cosines of the thermal axes relative to these 'tangents', $\alpha_{i T}$, will be indepen-

Table 2. Angles and direction cosines of resultant thermal axes relative to the molecular normal N and the in-plane tangential direction for each atom; and (direction cosines) ${ }^{2}$

		Angles relative to		Direction cosines			
Atom	B_{i}	N	T_{i}	$\alpha_{i N}$	$\alpha_{i T}$	$\left(\alpha_{i N}\right)^{2}$	$\left(\alpha_{i l}\right)^{2}$
$\mathrm{C}_{1}(1)$	$2.356 \AA^{2}$	$16 \cdot 0$	81.8	0.961	$0 \cdot 142$	$0 \cdot 924$	0.020
(2)	1-604	74.4	$134 \cdot 3$	$0 \cdot 269$	-0.698	0.072	0.487
(3)	1.252	86.5	$45 \cdot 4$	$0 \cdot 062$	$0 \cdot 702$	$0 \cdot 004$	0.493
$\mathrm{C}_{2}(1)$	3.248	$7 \cdot 2$	$83 \cdot 2$	0.992	$0 \cdot 118$	0.984	0.014
(2)	1.520	$93 \cdot 0$	$47 \cdot 2$	-0.052	0.680	0.003	0.462
(3)	1.224	96.6	$43 \cdot 6$	-0.115	0.724	0.013	$0 \cdot 524$
N(1)	3.444	$7 \cdot 8$	$98 \cdot 3$	0.991	-0.145	0.982	0.021
(2)	1.668	$82 \cdot 8$	$8 \cdot 1$	$0 \cdot 125$	0.990	0.016	0.979
(3)	1.080	$86 \cdot 8$	88.9	$0 \cdot 055$	$0 \cdot 019$	$0 \cdot 003$	0.004
O (1)	$4 \cdot 856$	$8 \cdot 5$	$84 \cdot 7$	0.989	$0 \cdot 093$	0.978	0.009
(2)	1.920	$82 \cdot 6$	$161 \cdot 1$	$0 \cdot 128$	-0.946	0.017	0.896
(3)	1-304	$86 \cdot 1$	$71 \cdot 9$	0.070	$0 \cdot 310$	0.005	$0 \cdot 096$

dent of the particular orientations of the in-plane libration axes; only the values of $R_{i j}$ for the in-plane axes will vary. Table 2 gives the values of $\alpha_{i N}$ and $\alpha_{i T}$, therefore, for all possible directions of libration axes in and normal to the molecular plane.

Table 3 shows the variation of $R_{i j}$ with the direction of the in-plane libration axes.

The equation (I) then assumes the following form for the $\mathrm{C}_{1}(\mathrm{I})$ thermal vibration, with similar equations for the other eleven thermal axes.

$$
\begin{aligned}
0.0298= & 0.012 t_{E}^{2}+0 \cdot 009 t_{F}^{2}+0.978 t_{G}^{2}+0 \cdot 924.1 \cdot 440^{2} \\
& \times\left[\varphi_{\nu}^{2} \cdot \sin ^{2}(1 \cdot 2+\psi)+\varphi_{1}^{2} \cdot \cos ^{2}(1 \cdot 2+\psi)\right] \\
& +0 \cdot 020.1 \cdot 440^{2} \cdot \varphi_{N}^{2}+u_{11}^{2} .
\end{aligned}
$$

Table 3. Values of radial distances $R_{i j}$ from the molecular axes L, M, N, where L is an in-plane axis making an angle of ψ with $0 \cdots-0$ and of $\left(61 \cdot 4^{\circ}-\psi\right)$ with $\mathrm{C}_{2} \cdots-\mathrm{C}_{2}$

Atom	$R_{i L}$	$R_{i M I}$	$R_{i N}$
C_{1}	$1.440 \sin (1 \cdot 2+\psi)$	$1 \cdot 440 \cos (1 \cdot 2+\psi)$	1.440
C_{2}	$1.454 \sin (61 \cdot 4-\psi)$	$1 \cdot 454 \cos (61 \cdot 4-\psi)$	1.454
N	$1.379 \sin (57 \cdot 1+\psi)$	$1 \cdot 379 \cos (57 \cdot 1+\psi)$	1.379
O	$2.677 \sin \psi$	$2 \cdot 677 \cos \psi$	$2 \cdot 677$

It is reasonable to neglect all terms with coefficients of less than 0.1 and we are left with the following set of approximate equations:

$$
\begin{align*}
& \mathrm{C}_{1}(1) \quad 0.0298=0.98 t_{G}^{2}+1.91\left[\varphi_{L}^{2} \cdot \sin ^{2}(1.2+\psi)\right. \\
& \left.+\varphi_{M}^{2} \cdot \cos ^{2}(\mathrm{I} \cdot 2+\psi)\right]+u_{11}^{2} \tag{1}\\
& \mathrm{C}_{2}(1) \quad 0.0411=0.97 t_{G}^{2}+2.08\left[\varphi_{L}^{2} \cdot \sin ^{2}(61 \cdot 4-\psi)\right. \\
& \left.+\varphi_{M g}^{2} \cdot \cos ^{2}(61 \cdot 4-\psi)\right]+u_{21}^{2} \tag{2}\\
& \mathrm{~N}(\mathrm{l}) \quad 0 \cdot 0436=0 \cdot 99 t_{G}^{2}+1 \cdot 87\left[\varphi_{L}^{2} \cdot \sin ^{2}(57 \cdot 1+\psi)\right. \\
& \left.+\varphi_{M S}^{2} \cdot \cos ^{2}(57 \cdot 1+\psi)\right]+u_{31}^{2} \tag{3}\\
& 0 \text { (1) } 0 \cdot 0616=1 \cdot 00 t_{G}^{2}+7 \cdot 01\left(\varphi_{L}^{2} \cdot \sin ^{2} \psi\right. \\
& \left.+\varphi_{M}^{2} \cdot \cos ^{2} \psi\right)+u_{41}^{2} \tag{4}\\
& \mathrm{C}_{1}(2) \quad 0.0203=0.96 t_{F}^{2}+0.15\left[\varphi_{L}^{2} \cdot \sin ^{2}(1.2+\psi)\right. \\
& \left.+\varphi_{12}^{2} \cdot \cos ^{2}(\mathrm{l} \cdot 2+\psi)\right]+\mathrm{I} \cdot 01 \varphi_{N}^{2}+u_{12}^{2} \tag{5}\\
& \mathrm{C}_{2} \text { (2) } \quad 0.0192=0.35 t_{E}^{2}+0.62 t_{F}^{2}+98 \varphi_{N}^{2}+u_{22}^{2} \tag{6}\\
& \mathrm{~N} \text { (2) } \quad 0.0211=0.11 t_{E}^{2}+0.89 t_{F}^{2}+1.86 \varphi_{N}^{2}+u_{32}^{2} \tag{7}\\
& \mathrm{O} \text { (2) } \quad 0.0243=0.91 t_{F}^{2} \quad+6.42 \varphi_{N}^{2}+u_{42}^{2} \tag{8}\\
& \mathrm{C}_{1} \text { (3) } \quad 0.0158=0.96 t_{E}^{2} \quad+1.02 \varphi_{N}^{2}+u_{13}^{2} \tag{9}\\
& \mathrm{C}_{2} \text { (3) } \quad 0.0155=0.63 t_{E}^{2}+0.37 t_{T}^{2}+1 \cdot 111 \varphi_{1}^{2}+u_{23}^{2} \tag{10}\\
& \mathrm{~N} \text { (3) } \quad 0.0137=0.88 t_{E}^{2}+0.11 t_{F}^{2} \quad+u_{33}^{2} \tag{11}
\end{align*}
$$

O(3) $\quad 0.0165=0.91 t_{E}^{2} \quad+0.69 \varphi_{N}^{2}+u_{43}^{2}$.
The maximum value of t_{F}^{2} (from (5)) is 0.0210 and this corresponds (from (10)) to a minimum t_{E}^{2} of 0.0122 if $\varphi_{N}^{2}=u_{23}^{2}=0$; but t_{E}^{2} can be less if $\varphi_{N}^{2} \neq 0$.
In order to explain the consistently larger values of B_{2}, t_{F}^{2} must be considerably larger than t_{E}^{2} unless there are big internal vibrations along the (2) directions.

It seems that we must choose between large values of u_{22}^{2}, u_{32}^{2} (and u_{12}^{2}), which correspond with $\varphi_{N}^{2} \geq 0.0016$, or a large value of u_{43}^{2} and medium u_{13}^{2}, which correspond with t_{E}^{2}, t_{F}^{2} and φ_{N}^{2} equal or near to 0.0116 , $0.0193,0.0010$ respectively, and for which
$0 \cdot 15\left(\varphi_{L}^{2} \sin ^{2}(1 \cdot 2+\psi)+\varphi_{M M}^{2} \cos ^{2}(1 \cdot 2+\psi)\right)+u_{12}^{2}=0 \cdot 0008$.
There seems no physical reason why the internal vibrations along the (2) axes should be large, but u_{43} and u_{13} correspond to movements of O and of C approximately along the [101] (H-bonding) direction, which are not impossible. It would be interesting to see whether neutron-diffraction studies would show an even larger H movement in this direction, or might indicate that some or all of u_{43} and u_{13} is due to bond anisotropy and not vibration.
The most reasonable positions of the in-plane libration axes would seem to be either [101] and its normal in the molecular plane ($\psi=-35 \cdot 5^{\circ}$), or along and perpendicular to the line joining centro-symmetrical oxygen atoms ($\psi=0^{\circ}$). The former would be the axis common to a string of molecules along the [101] direction; the latter would be (or be near to) the axis of inertia of the single molecule. These two alternatives would give
$\left.\begin{array}{rl}\mathrm{C}_{1}(1) & 0.0298=0.98 t_{G}^{2}+0.61 \varphi_{L}^{2}+1.30 \varphi_{M I}^{2}+u_{11}^{2} \\ \mathrm{C}_{2}(1) & 0.0411=0.97 t_{G}^{2}+2.05 \varphi_{L}^{2}+0.03 \varphi_{M I}^{2}+u_{21}^{2} \\ \mathrm{~N}(1) & 0.0436=0.99 t_{G}^{2}+0.25 \varphi_{L}^{2}+1 \cdot 62 \varphi_{M I}^{2}+u_{31}^{2} \\ \mathrm{O}(1) & 0.0616=1.00 t_{G}^{2}+2.36 \varphi_{L}^{2}+4.65 \varphi_{M I}^{2}+u_{41}^{2}\end{array}\right\} \quad \psi=-35.5$
Trial solutions show, however, that for $\psi=-35 \cdot 5^{\circ}$ (and directions in this region) the equations always lead to rather large out-of-plane vibrations of C_{2} and/or N. By taking $\psi=0^{\circ}$ it is possible to avoid postulating such large intra-molecular vibrations, al-

Table 4. Range of values of t_{E}^{2}, t_{F}^{2} and φ_{N}^{2} and corresponding values of the internal vibrations $u_{i d}^{2}$

t_{E}^{2}	t_{F}^{2}	φ_{N}^{2}	u_{22}^{2}	u_{32}^{2}	u_{42}^{2}	u_{13}^{2}	u_{23}^{2}	u_{53}^{2}	u_{43}^{2}
0.0122	0.0210	0	0.0025	0.0011	0.0052	0.0041	0	0.0006	0.0054
0.0130	0.0197	0	0.0024	0.0022	0.0065	0.0033	0	0.0001	0.0067
0.0130	0.0170	0.0009	0.0032	0.0029	0.0030	0.0024	0	0.0004	0.0063
0.0116	0.0193	0.0010	0.0021	0.0007	0.0003	0.0037	0	0.0014	0.0052
0.0124	0.0162	0.0015	0.0034	0.0025	0	0.0024	0	0.0010	0.0042
0.0138	0.0135	0.0016	0.0044	0.0046	0.0017	0.0010	0	0.0001	0.0029
0.0138	0.0124	0.0020	0.0047	0.0048	0.0002	0.0006	0	0.0002	0.0026

though as Table 5 shows, u_{3} is still fairly large; but it can be reduced by giving ψ a small positive value. [It may be true, however, that N does have an independent out-of-plane vibration, tending to pyramidal rather than plane bonds.]

Table 5. Values of $t_{G}^{2}, \varphi_{L}^{2}$ and φ_{M}^{2} consistent with minimum values of $u_{i d}^{2}$, for $\psi=0^{\circ}, 5^{\circ}, 10^{\circ}, 15^{\circ}$

t_{G}^{2}	φ_{L}^{2}	φ_{M}^{2}	u_{11}^{2}	u_{21}^{2}	u_{31}^{2}	u_{41}^{2}
$\psi=0^{\circ}$ (range of values)						
$0 \cdot 0204$	0.0120	$0 \cdot 0050$	0	0	0.0048	$0 \cdot 0062$
0.0181	$0 \cdot 0128$	$0 \cdot 0062$	0	0	0.0054	0
0.0125	$0 \cdot 0160$	0.0070	0.0012	0	0.0063	0
$\psi=5^{\circ}$ (best value)						
0.0173	0.0141	0.0062	$0 \cdot 0007$	0	0.0034	0
$\psi=10^{\circ}$ (best value)						
$0 \cdot 0176$	0.0150	0.0060	0.0004	0	$0 \cdot 0006$	0
$\psi=15^{\circ}$ (best value)						
$0 \cdot 0183$	0.0145	$0 \cdot 0055$	0	$0 \cdot 0022$	0	$0 \cdot 0005$

Table 5 shows that $\psi=10^{\circ}$, that is, an axis making an angle of 10° with $\mathrm{O} \cdots-\mathrm{O}$ and $51 \cdot 4^{\circ}$ with $\mathrm{C}_{2} \cdots-\mathrm{C}_{2}$ in the molecular plane, is a most probable libration axis, together with its normal in the molecular plane, and N the normal to the molecular plane. But if $\psi=0^{\circ}$, then $\overline{u_{31}^{2}}$ is approximately $0 \cdot 005$. Table 6 gives a summary of the best set of all parameters, for which the non-rigid-body vibrations are minimum.

Conclusion

The vibration pattern that emerges is one in which the chains of molecules extended along [101] and linked by hydrogen bonds are behaving like a bundle of sinuous and somewhat elastic ribbons. The easy movements are those by which the atoms move out of the plane of the ribbon, either by a translational or librational movement of the molecule as a whole. Translation of the molecule within the chain is slightly more difficult and rigid-body libration about the normal to the molecular plane much more so. There seems to be an independent (non-rigid-body) movement of the oxygen atom along the [101] direction, which is accompanied by a smaller movement of the
C_{1} atom to which it is directly attached; and possibly even of N and C_{2}, the latter along the direction (2). The N atom may have an out-of-plane vibration, tending towards pyramidal bonding; but this is not proved.

Fig. 2. Diagram to show chains of molecules along [101] directions in one (010) plane. One chain of molecules of the next sheet (through $\frac{1}{2}, \frac{1}{2}, 0$) is also shown.

Low-temperature measurements on this substance would be of particular interest, as one would expect that the non-rigid-body movements would not be temperature-dependent, but that the t and φ values should be reduced. The coefficient of expansion is probably a minimum along [101] and a maximum normal to $(10 \overline{1})$. Neutron-diffraction experiments could indicate whether the non-rigid-body movements found for 0 and C are really due, in whole or in part, to bonding anisotropy.

I am indebted to my colleagues at University College for computational assistance and to Dr R. A. Sparks for a Mercury programme converting $\alpha_{i} \ldots \eta_{i}$

Table 6. The best set of translational and librational (amplitudes) ${ }^{2}$ and r.m.s., together with residual intramolecular vibrations $u_{i d}^{2}$ and $\left(\overline{u_{i d}^{2}}\right)^{\frac{1}{2}}$

t_{E}^{2}	$t^{2}{ }^{\prime}$	t_{G}^{2}		φ_{L}^{2}	$\varphi_{\Delta S}^{2}$	φ_{N}^{2}	u_{11}^{2}		u_{21}^{2}	u_{31}^{2}	u_{41}^{2}
0.0116	0.0193	0.0176		$0 \cdot 0150$	$0 \cdot 0060$	0.0010	$0 \cdot 0004$		0	$0 \cdot 0006$	0
	u_{12}^{2}	u_{22}^{2}		u_{32}^{2}	u_{42}^{2}	u_{13}^{2}	u_{23}^{2}		u_{33}^{2}	u_{43}^{2}	
	0	$0 \cdot 0021$		$0 \cdot 0007$	$0 \cdot 0003$	0.0037	0		0.0014	0.0052	
					$\left(\overline{\varphi^{2}}\right)^{\frac{1}{2}}$ librations about						
	[101]	[010]		$\perp(10 \overline{\mathrm{l}})$		L	M		N		
	$0.11 \AA$	$0 \cdot 14 \AA$		$0 \cdot 13 \AA$		$0 \cdot 12\left(7 \cdot 0^{\circ}\right)$	$0 \cdot 08\left(4.7^{\circ}\right)$		$0 \cdot 03\left(1.8^{\circ}\right)$	radians	
u_{11}	u_{21}	u_{31}	u_{41}	u_{12}	u_{22}	u_{32}	u_{42}	u_{13}	u_{23}	u_{33}	u_{43} 0.07
$0.02 \AA$	0	0.025	0	0	0.045	$5 \quad 0.025$	0.015	0.06	0	$0 \cdot 035$	$0 \cdot 07$

to thermal parameters relative to a, b, c^{*}. My thanks are due also to Mrs Varwell for help with diagrams; to the Wellcome Trust for a grant for computing and to the University of London Central Research Fund for tape-editing equipment. I must particularly thank Dr R. E. Marsh for most useful suggestions in relation to the orientation of the libration axes.

References

Corey, R. B. (1938). J. Amer. Chem. Soc. 60, 1598.

Degeile, R. \& Marsh, R. E. (1959). Acta Cryst. 12, 1007.

Lonsdale, K. (1959). Z. Kristallogr. 112, 188.
Lonsdale, K. \& Milledge, H. J. (1959). Nature, Lond. 184, 1545.
Lonsdale, K., Milledge, H. J. \& Rao, K. V. K. (1960). Proc. Roy. Soc. A, 255, 82.
Rollett, J. S. \& Davies, D. R. (1955). Acta Cryst. 8, 125.

Vainshtein, B. K. (1955). Zhurnal Fizicheskoi Khimii (U.S.S.R.) 29, 327.

Acta Cryst. (1961). 14, 42

A Detailed Refinement of the Crystal Structure of Sodium Tropolonate

By R. Shiono
The Crystallography Laboratory, University of Pittsburgh, Pittsburgh 13, Pennsylvania, U.S.A.

(Received 8 February 1960)
A refinement of the crystal structure of sodium tropolonate, including anisotropic temperature factors, has been carried out using Sasada \& Nitta's three-dimensional data. The differential Fourier synthesis and the least-squares methods were used and the two results are compared.

Introduction

The crystal and molecular structure of sodium tropolonate $\mathrm{NaC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$ was studied by Sasada \& Nitta (1956) with three-dimensional line synthesis through atomic centers. The standard deviation of their final bond lengths suggested that more accurate values for the interatomic distances could be obtained by further refinement of their data.
There have been several structure analysis of tropolone derivatives, i.e. cupric tropolone, $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{CuO}_{4}$ by Robertson (1951); purpurogallin by Taylor (1952) and by Dunitz (1952); tropolone by Kiruta \& Kubo (1953); tropolone hydrochloride, $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{ClO}_{2}$, by Sasada, Osaki \& Nitta (1954) and Sasada \& Nitta (1957); tribromo-tropolone, $\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{Br}_{3} \mathrm{O}_{2}$, by Kubo, Kurita \& Kimura (1954); 2-bromo-3-hydroxy-tropone, $\mathrm{C}_{7} \mathrm{O}_{2} \mathrm{H}_{5} \mathrm{Br}$ and 7 -bromo-3-hydroxy-tropone by McDonald (1955). All these results except tropolene hydrochloride (1957) were based on one projection of the X-ray data only, or by electron diffraction. Tropolone hydrochloride was refined with three-dimensional data in a similar manner to that of sodium tropolonate.
Since no complete three-dimensional refinement of a structure containing a tropolone ring have been completed we have undertaken this further refinement on the sodium salt using anisotropic temperature factors. A subsidiary purpose of the work was the more complete testing of the differential synthesis and anisotropic structure factor refinement programs which have been written for the IBM 650 computer (Shiono, 1957, 1959).
The numbering of atoms in the tropolonate ion, I,
is the same as used in the earlier paper. The space group of the crystal structure is $P 2_{1} / c$ with 4 molecules in the unit cell,

$$
a=13 \cdot 91, b=3 \cdot 69, c=11 \cdot 67 \AA, \beta=93 \cdot 1^{\circ} .
$$

Three-dimensional refinement by the Fourier method

All the observed data in the Table 2* and Table 3 of the paper by Sasada \& Nitta (1956) were used in this refinement. The final coordinates and temperature factors were taken as the starting parameters. Cyclic computations of structure factors followed by the differential synthesis with both observed and calculated structure factors were used to refine the parameters by means of an IBM 650 .

The atomic scattering factors for Na, O and C used are those by Berghuis et al. (1955). An overall temperature factor of $3 \cdot 3 \AA^{2}$ was applied in the first calculation of structure factors, and this was changed to $3 \cdot 2 \AA^{2}$

* All the values in the Table 2 were multiplied by a factor of 2 in order to bring them to the normal scale of the Table 3.

